RA (Res	MAKRISHNA MISSION VIDYAMANDIR idential Autonomous College affiliated to University of Calcutt	CA (a)
	SECOND YEAR [BATCH 2017-20] B.A./B.Sc. FOURTH SEMESTER (January – June) 2019 Mid-Semester Examination, March 2019	
Date : 25/03/2019 MATHEMATICS (Honours)		
Time : 2 pm – 4 pm	Paper : IV	Full Marks : 50
ני	Use a separate Answer Book <u>for each group</u>]	
	<u>Group – A</u>	[25 marks]
Answer <u>any two</u> questions j	from <u>Question Nos. 1 to 3</u> :	[2×9]
1. a) Suppose $\mathcal{P}(\mathbb{N})$ is the	power set of \mathbb{N} . Define	
$\mathbf{d}:\mathcal{P}(\mathbb{N})\times\mathcal{P}(\mathbb{N})\to\mathbb{R}$	$ ℝ $ by (for A, B ∈ $\mathcal{P}(ℕ)$),	
$\left(0, \text{if } A\Delta B\right)$	$\dot{\phi} = \phi$	
$d(A,B) = \left\{\frac{1}{m}, \text{ if mis}\right\}$	the smallest elment of $A\Delta B$	
Verify whether d is a t	metric on $\mathcal{P}(\mathbb{N})$.	
b) Find two closed sets metric in \mathbb{R} . Justify y	A,B in \mathbb{R} such that $A \cap B = \phi$ and $d(A,B) = 0$ where 'd your answer.	denotes the usual
c) Show that $\{0,1\}$ is a G_{δ} -set in \mathbb{R} .		[4+3+2]
2. a) Define equivalent met	trics. Give example with justification.	
b) Show that the metric space l_{∞} is not separable.		[4+5]
3. a) Suppose A be an unco	puntable subset of \mathbb{R} . Show that A has a limit point	
b) Define two metrics 'd	$_{l}'$ and $'d_{2}'$ on \mathbb{N} such that $\big(\mathbb{N},d_{_{1}}\big)has$ no isolated point and ($(\mathbb{N}, \mathbf{d}_2)$ has only one
isolated point. Justify	your answer.	[3+(3+3)]
Answer <u>any two</u> questions j	from <u>Question Nos. 4 to 6</u> :	[2×3.5]
4. For $\alpha = (x_1, x_2)$ and β	= (y_1, y_2) in \mathbb{R}^2 , $(\alpha \beta) = x_1y_1 - x_2y_1 - x_1y_2 + 4x_2y_2$.	
Prove that \mathbb{R}^2 forms a	n inner product space with respect to $()$.	
5. Let V be the subspace	of $\mathbb{R}[x]$ of polynomials of degree at most 3. Equip V with	the inner product
$(f g) = \int_{0}^{1} f(t)g(t)dt$	for $f, g \in \mathbb{R}[x]$.	
Apply the Gram-Schn	nidt process to the basis $\{1, x, x^2, x^3\}$.	
6. Let () be the standard such that $(\alpha T\alpha) = 0$	inner product on \mathbb{C}^2 . Prove that there is no non-zero linea for every α in \mathbb{C}^2 .	ar operator T on \mathbb{C}^2

.

<u>Group – B</u>

Answer <u>any two</u> questions from <u>Question Nos. 7 to 9</u> :

7. Show that the tangent to the curve $x^3 + y^3 - 3axy = 0$ at a point $[\neq (0,0)]$ where it meets the parabola $y^2 = ax$ is parallel to y-axis.

8. Find the equation of the evolute of astroid $x^{2/3} + y^{2/3} = a^{2/3}$.

9. In the curve $r^n = a^n \cos n\theta$, verify that the radius of curvature $\rho = \frac{r^2}{(n+1)p} = \frac{a^n}{(n+1)r^{n-1}}$, where p is the length of perpendicular from the pole upon any tangent to the curve.

Answer any three questions from Question Nos. 10 to 14 :

- 10. Find the equation of the integral surface given by the differential equation 2y(z-3)p+(2x-z)q = y(2x-3), which passes through the circle z = 0, $x^2 + y^2 = 2x$.
- 11. Using Charpit's auxiliary equation, find a complete integral of the equation

$$2(z+xp+yq)=yp^2.$$

- 12.a) Eliminate the functions f and F from y = f(x at) + F(x + at).
 - b) Find the PDE arising from $\phi\left(\frac{z}{x^3}, \frac{y}{x}\right) = 0$, where ϕ is an arbitrary function of its arguments. [2+3]
- 13. Find the complete solution of the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = X$, using the method of variation of parameters, where, P,Q, and X are functions of x only. [5]

_____ × _____

14. If λ is an Eigen value of Sturn-Liouville problem and ϕ_1 and ϕ_2 are the corresponding eigen functions then prove that ϕ_1 and ϕ_2 are linearly dependent.

[2×5]

[3×5]

[5]